CSCI 210: Computer Organization
Lecture 10: Control Flow

Stephen Checkoway
Slides from Cynthia Taylor

Announcements

* Problem Set 3 Due Friday

* Professor Warford Research Talk,
Wednesday

* Professor Beers Thursday

CS History: The If-Else Statement

Haskell Curry and Willa Wyatt are the first people to describe performing different
instructions based on the result of a previous calculation, on the Eniac in 1946

Early assembly language instructions jumped to a new memory location based on a specific
condition, were not general purpose

Fortran (1957) specifying jumps to three locations at once, depending on whether a
calculation was negative, zero, or positive, and gave it the name "if”

Flow-matic (Grace Hopper, 1958), used comparisons between numbers and used the name
“otherwise” for else

In 1958, a German computing organization proposed an if statement that took an arbitrary
Boolean statement, had an “else” case, and returned control to immediately after the if/else
statement after completing the statement

Logical Operations

nstructions for bitwise manipulation
Operation C Java MIPS
Shift left << << sl
Shift right >> >>> sril
Bitwise AND & & and, andi
Bitwise OR | | or, ori
Bitwise NOT ~ ~ nor

Useful for extracting and inserting groups of bits in a word

Or Truth Table

0 1

0 1

OR Operations
e Useful to set bits in a word

— Set some bits to 1, leave others unchanged

or $t0, $tl, $t2

St2 | 0000 0000 0000 0000 0000 1101 1100 0000

St1 | 0000 0000 0000 0000 0011 1100 0000 0000

St0 | 0000 0000 0000 00000011 1101 1100 0000

e x|O

e x |1

OR ldentities (for a single bit)

A. 00010000

B. 01000001

C. 10101110

D. 11101111

01101001 | 11000111

Nor Truth Table

0 1

1 0

NOR Operations
 MIPS has NOR 3-operand instruction
—aNORb=NOT(aORb)

nor $t0, $tl, $t2

St2 | 0000 0000 0000 0000 0000 1101 1100 0000

St1 | 0000 0000 0000 0000 0011 1100 0000 0000

St0 [1111111111111111110000100011 1111

A. 00010000

B. 01000001

C. 10101110

D. 11101111

01101001 NOR 11000111

NOT operations

* |nverts all the bits in a word
e ChangeOtol,and1to0

MIPs does not need a NOT instruction because we

can use for NOT St1, St2
A. NOR St1, St2, Szero

B. NOR St1, St2, St3, where all bitsin St3 are set to 1
C. NORISt1, St2,111111121112111111, where NORI is Nor Immediate
D. It does require a NOT operation

E. None of the above are correct

NOR Operations
 MIPS has NOR 3-operand instruction
—aNORb==NOT(aORDb)

nor $t0, $tl, $zero

St1 | 0000 0000 0000 00000011 1100 0000 0000

St0 |11111111111111111100001111111111

XOR Truth Table

0 1

0 1

XOR Operations
* Exclusive OR (writtenx @ y or x M y)

— Set bits to one only if they are not the same

xor $t0, $t1, $t2

St2 | 0000 0000 0000 0000 0000 1101 1100 0000

St1 | 0000 0000 0000 0000 0011 1100 0000 0000

St0 | 0000 0000 0000 0000 0011 0001 1100 0000

A. 00010000

B. 01000001

C. 10101110

D. 11101111

01101001 XOR 11000111

XOR Identities (for a single bit)

* xXORO0 =

* xXOR1-=

10 & 7

C. 7
D. 10

E. None of the above

Today: Program control flow

* High level languages have many ways to control the order of
execution in a program: if, if-else, for loops, while loops

* Today we will look at how these higher order concepts are built
out of MIPS control flow instructions

Control Flow

* Recall the basic instruction cycle
— IR = Memory[PC]
—PC=PC+4

* Both branch and jump instructions change the value of the
program counter

Control Flow - Instructions

e Conditional

— beq, bne: compare two registers and branch depending on the
comparison

— Change the value of the program counter if a condition is true

* Unconditional
—j, jal, jr: jump to a location
— Always change the value of the program counter

Control Flow - Labels

* |n assembly, we use labels to help us guide control flow. Labels
can be the target of branch or jump instructions.

* Example:
7 Label

Label: add $tl, $t0, St2

* Assemblers are responsible for translating labels into
addresses.

C Code

1f (X
X pr—

== ()
Y + 7Z;

Assuming X, Y, and Z are integers in registers St0, St1,
and St2, respectively, which are the equivalent assembly
instructions?

A

Label:

beg $t0, $zero, Label
add $t0, s$tl, sSt2

Label:

beg $t0, $zero, Label
add $t0, $tl, Stz

Label:

bne $t0,S$Szero, Label
add $t0, s$tl, sSt2

D — None of these is correct.

If (x <vy): Set Less Than

Set result to 1 if a condition is true
— Otherwise, setto O

slt rd, rs, rt
—if(rs<rt)rd=1; elserd =0;

slti1 rt, rs, constant

— if (rs < constant) rt = 1; else rt = 0;

Use in combination with beq, bne

st $t0, $s1, $s2 # if ($s1l < $s2)
bne $t0, $zero, L # branch to L

Branch Instruction Design

« Why notblt, bge, etc?
 Hardware for <, 2, ... slower than =, #

— Combining with branch involves more work per instruction
— beqg and bne are the common case

High level code often has code like this:

if (i<j){
=i+

)

Assume St0 holds i and St1 holds j. Which of the following is the correct translation of

1,

the above code to MIPS assembly (recall Szero is always 0):

slt st2, $t0, s$tl slt st2, St0, Sstl slt st2, St0, Sstl

bne St2, Szero, X bne St2, Szero, X beqg St2, Szero, X

addi $t0, $t0, 1 addi $t0, St0, 1 addi $t0, $t0, 1
X: next instruction next instruction next instruction

A

None of the above

B

st rd,

if(rs<rt)rd=1; elserd =0;

rs, rt

C

Signed vs. Unsigned

 Signed comparison: s1t, s1t1

* Unsigned comparison: s1tu, s1tu1

slt vs sltu

SsO=1111111111111111111111111111 1111
Ss1 = 0000 0000 0000 0000 0000 0000 0000 0001

slt $t0, $s0, Ss1 sltu St0, Ss0, Ss1
A St0=1 St0=1
B St0=0 St0=1
C St0=0 St0=0
D St0=1 St0=0

slt rd, rs, rt
if(rs<rt)rd=1; elserd = 0;

Questions on BEQ, BNE, SLT?

Reading

e Next lecture: Procedures
— Section 2.9

* Problem set: Due Friday

* Lab 2: Due Monday

	Slide 1: CSCI 210: Computer Organization Lecture 10: Control Flow
	Slide 2: Announcements
	Slide 3: CS History: The If-Else Statement
	Slide 4: Logical Operations
	Slide 5: Or Truth Table
	Slide 6: OR Operations
	Slide 7: OR Identities (for a single bit)
	Slide 8: 01101001 | 11000111
	Slide 9: Nor Truth Table
	Slide 10: NOR Operations
	Slide 11: 01101001 NOR 11000111
	Slide 12: NOT operations
	Slide 13: MIPs does not need a NOT instruction because we can use ____ for NOT $t1, $t2
	Slide 14: NOR Operations
	Slide 15: XOR Truth Table
	Slide 16: XOR Operations
	Slide 17: 01101001 XOR 11000111
	Slide 18: XOR Identities (for a single bit)
	Slide 19: 10 & 7
	Slide 20: Today: Program control flow
	Slide 21: Control Flow
	Slide 22: Control Flow - Instructions
	Slide 23: Control Flow - Labels
	Slide 24
	Slide 25: If (x < y): Set Less Than
	Slide 26: Branch Instruction Design
	Slide 27
	Slide 28: Signed vs. Unsigned
	Slide 29: slt vs sltu
	Slide 30: Questions on BEQ, BNE, SLT?
	Slide 31: Reading

