
CSCI 210: Computer Organization

Lecture 10: Control Flow

Stephen Checkoway

Slides from Cynthia Taylor

Announcements

• Problem Set 3 Due Friday

• Professor Warford Research Talk,
Wednesday

• Professor Beers Thursday

CS History: The If-Else Statement
• Haskell Curry and Willa Wyatt are the first people to describe performing different

instructions based on the result of a previous calculation, on the Eniac in 1946

• Early assembly language instructions jumped to a new memory location based on a specific
condition, were not general purpose

• Fortran (1957) specifying jumps to three locations at once, depending on whether a
calculation was negative, zero, or positive, and gave it the name "if.”

• Flow-matic (Grace Hopper, 1958), used comparisons between numbers and used the name
“otherwise” for else

• In 1958, a German computing organization proposed an if statement that took an arbitrary
Boolean statement, had an ”else” case, and returned control to immediately after the if/else
statement after completing the statement

Logical Operations

• Instructions for bitwise manipulation

• Useful for extracting and inserting groups of bits in a word

Operation C Java MIPS

Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

Or Truth Table

0 1

0 0 1

1 1 1

OR Operations
• Useful to set bits in a word

– Set some bits to 1, leave others unchanged

 or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

OR Identities (for a single bit)

• x | 0 =

• x | 1 =

01101001 | 11000111

A. 00010000

B. 01000001

C. 10101110

D. 11101111

Nor Truth Table

0 1

0 1 0

1 0 0

NOR Operations
• MIPS has NOR 3-operand instruction

– a NOR b = NOT (a OR b)

 nor $t0, $t1, $t2

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0010 0011 1111$t0

0000 0000 0000 0000 0000 1101 1100 0000$t2

01101001 NOR 11000111

A. 00010000

B. 01000001

C. 10101110

D. 11101111

NOT operations

• Inverts all the bits in a word
• Change 0 to 1, and 1 to 0

MIPs does not need a NOT instruction because we
can use ____ for NOT $t1, $t2

A. NOR $t1, $t2, $zero

B. NOR $t1, $t2, $t3, where all bits in $t3 are set to 1

C. NORI $t1, $t2, 1111111111111111, where NORI is Nor Immediate

D. It does require a NOT operation

E. None of the above are correct

NOR Operations
• MIPS has NOR 3-operand instruction

– a NOR b == NOT (a OR b)

 nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

XOR Truth Table

0 1

0 0 1

1 1 0

XOR Operations
• Exclusive OR (written x ⊕ y or x ^ y)

– Set bits to one only if they are not the same

 xor $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 0001 1100 0000$t0

01101001 XOR 11000111

A. 00010000

B. 01000001

C. 10101110

D. 11101111

XOR Identities (for a single bit)

• x XOR 0 =

• x XOR 1 =

10 & 7

A. 0

B. 2

C. 7

D. 10

E. None of the above

Today: Program control flow

• High level languages have many ways to control the order of
execution in a program: if, if-else, for loops, while loops

• Today we will look at how these higher order concepts are built
out of MIPS control flow instructions

Control Flow

• Recall the basic instruction cycle

– IR = Memory[PC]

– PC = PC + 4

• Both branch and jump instructions change the value of the
program counter

Control Flow - Instructions

• Conditional

– beq, bne: compare two registers and branch depending on the
comparison

– Change the value of the program counter if a condition is true

• Unconditional

– j, jal, jr: jump to a location

– Always change the value of the program counter

Control Flow - Labels

• In assembly, we use labels to help us guide control flow. Labels
can be the target of branch or jump instructions.

• Example:

j Label

…

Label: add $t1, $t0, $t2

• Assemblers are responsible for translating labels into
addresses.

if (X == 0)

 X = Y + Z;

C Code

Assuming X, Y, and Z are integers in registers $t0, $t1,
and $t2, respectively, which are the equivalent assembly
instructions?

 beq $t0,$zero, Label

Label: add $t0, $t1, $t2

 bne $t0,$zero, Label

 add $t0, $t1, $t2

Label:

A

B

D – None of these is correct.

 beq $t0,$zero, Label

 add $t0, $t1, $t2

Label:

C

If (x < y): Set Less Than

• Set result to 1 if a condition is true
– Otherwise, set to 0

• slt rd, rs, rt
– if (rs < rt) rd = 1; else rd = 0;

• slti rt, rs, constant
– if (rs < constant) rt = 1; else rt = 0;

• Use in combination with beq, bne
 slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Branch Instruction Design

• Why not blt, bge, etc?

• Hardware for <, ≥, … slower than =, ≠

– Combining with branch involves more work per instruction

– beq and bne are the common case

slt $t2, $t0, $t1

 bne $t2, $zero, x

addi $t0, $t0, 1

x: next instruction

A

High level code often has code like this:
if (i < j) {
 i = i + 1;
}
Assume $t0 holds i and $t1 holds j. Which of the following is the correct translation of
the above code to MIPS assembly (recall $zero is always 0):

slt $t2, $t0, $t1

 bne $t2, $zero, x

x: addi $t0, $t0, 1

 next instruction

B C

slt $t2, $t0, $t1

 beq $t2, $zero, x

 addi $t0, $t0, 1

x: next instruction

D None of the above slt rd, rs, rt
if (rs < rt) rd = 1; else rd = 0;

Signed vs. Unsigned

• Signed comparison: slt, slti

• Unsigned comparison: sltu, sltui

slt vs sltu

$s0 = 1111 1111 1111 1111 1111 1111 1111 1111

$s1 = 0000 0000 0000 0000 0000 0000 0000 0001

slt $t0, $s0, $s1 sltu $t0, $s0, $s1

A $t0 = 1 $t0 = 1

B $t0 = 0 $t0 = 1

C $t0 = 0 $t0 = 0

D $t0 = 1 $t0 = 0

slt rd, rs, rt
if (rs < rt) rd = 1; else rd = 0;

Questions on BEQ, BNE, SLT?

Reading

• Next lecture: Procedures

– Section 2.9

• Problem set: Due Friday

• Lab 2: Due Monday

	Slide 1: CSCI 210: Computer Organization Lecture 10: Control Flow
	Slide 2: Announcements
	Slide 3: CS History: The If-Else Statement
	Slide 4: Logical Operations
	Slide 5: Or Truth Table
	Slide 6: OR Operations
	Slide 7: OR Identities (for a single bit)
	Slide 8: 01101001 | 11000111
	Slide 9: Nor Truth Table
	Slide 10: NOR Operations
	Slide 11: 01101001 NOR 11000111
	Slide 12: NOT operations
	Slide 13: MIPs does not need a NOT instruction because we can use ____ for NOT $t1, $t2
	Slide 14: NOR Operations
	Slide 15: XOR Truth Table
	Slide 16: XOR Operations
	Slide 17: 01101001 XOR 11000111
	Slide 18: XOR Identities (for a single bit)
	Slide 19: 10 & 7
	Slide 20: Today: Program control flow
	Slide 21: Control Flow
	Slide 22: Control Flow - Instructions
	Slide 23: Control Flow - Labels
	Slide 24
	Slide 25: If (x < y): Set Less Than
	Slide 26: Branch Instruction Design
	Slide 27
	Slide 28: Signed vs. Unsigned
	Slide 29: slt vs sltu
	Slide 30: Questions on BEQ, BNE, SLT?
	Slide 31: Reading

